国产熟妇勾子乱视频,免费看男阳茎进女阳道试看,夫の目の前侵犯新婚人妻在线,少女大人第五集免费观看

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

基于電動汽車充電負荷變動速率與TCN-LSTM的負荷預測

來源:電工電氣發(fā)布時間:2025-06-27 13:27 瀏覽次數(shù):3

基于電動汽車充電負荷變動速率與TCN-LSTM的負荷預測

汪楚皓1,2,郭航3
(1 長沙理工大學 電氣與信息工程學院,湖南 長沙 410114;
2 國網(wǎng)湖南省電力有限公司常德供電分公司,湖南 常德 415000;
3 國網(wǎng)湖南省電力有限公司株洲供電分公司,湖南 株洲 412000)
 
    摘 要:電動汽車充電負荷的隨機性波動對電力系統(tǒng)的安全穩(wěn)定性帶來挑戰(zhàn),提出了一種基于電動汽車充電負荷變動速率與人工智能算法結(jié)合的短期預測方法。分析了電動汽車充電負荷的歷史數(shù)據(jù),提出了一種反映充電負荷速率變動特征的指標;結(jié)合時空卷積網(wǎng)絡(TCN)和長短期記憶網(wǎng)絡(LSTM)構(gòu)建了預測模型,對充電負荷進行精準預測。實驗結(jié)果表明,該方法能夠有效研究區(qū)域內(nèi)電動汽車用戶的充電規(guī)律,對充電負荷峰谷態(tài)勢的預測表現(xiàn)出較高的準確性,為深入分析用戶充電行為模式、準確預估短期充電負荷提供了重要技術(shù)支持,對提升電力系統(tǒng)運行效率與穩(wěn)定性具有重要意義。
    關(guān)鍵詞: 電動汽車;充電負荷;時空卷積網(wǎng)絡;長短期記憶網(wǎng)絡;短期負荷預測
    中圖分類號:TM715 ;U469.72     文獻標識碼:A     文章編號:1007-3175(2025)06-0019-05
 
Load Forecasting Based on the Variation Rate of Electric
Vehicle Charging Load and TCN-LSTM
 
WANG Chu-hao1,2, GUO Hang3
(1 School of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha 410114, China;
2 State Grid Hunan Electric Power Co., Ltd. Changde Power Supply Branch Company, Changde 415000, China;
3 State Grid Hunan Electric Power Co., Ltd. Zhuzhou Power Supply Branch Company, Zhuzhou 412000, China)
 
    Abstract: The stochastic fluctuations of electric vehicle charging loads pose challenges to the safety and stability of power systems. To address this issue, this paper proposes a short-term forecasting method based on the combination of the variation rate of electric vehicle charging load and artificial intelligence algorithms. Firstly, historical data of electric vehicle charging loads are analyzed, and an indicator reflecting the variation characteristics of the charging load rate is introduced. Subsequently, a predictive model combining temporal convolutional network(TCN) and long short-term memory network(LSTM) is constructed to achieve accurate load forecasting. Experimental results demonstrate that the proposed method effectively analyzes the charging patterns of electric vehicle users in the study area and achieves high accuracy in predicting the peak-valley trends of charging loads. This study provides critical technical support for analyzing user charging behavior patterns and accurately estimating short-term charging loads, offering significant contributions to enhancing the operational efficiency and stability of power systems.
    Key words: electric vehicle; charging load; temporal convolutional network; long short-term memory network; short-term load forecasting
 
參考文獻
[1] HU Xiaosong, YUAN Hao, ZOU Changfu, et al.Coestimation of state of charge and state of health for lithium-ion batteries based on fractionalorder calculus[J].IEEE Transactions on Vehicular Technology,2018,67(11) :10319-10329.
[2] LIU Senyi, LIU Chunhua.Generic predictive model calibration for PMSMs with different topologies[J].Green Energy and Intelligent Transportation,2022,1(1) :100015.
[3] DANESHZAND F, COKER P J, POTTER B, et al.EV smart charging: How tariff selection influences grid stress and carbon reduction[J].Applied Energy,2023,348 :121482.
[4] 王惠文,孟潔. 多元線性回歸的預測建模方法[J]. 北京航空航天大學學報,2007,33(4) :500-504.
[5] 彭丁聰. 卡爾曼濾波的基本原理及應用[J]. 軟件導刊,2009,8(11) :32-34.
[6] 包研科,陳然,鄭宏杰,等. 指數(shù)平滑與自回歸融合預測模型及實證[J] . 計算機工程與應用,2022,58(14) :269-281.
[7] SHI Jinkai, ZHANG Weige, BAO Yan, et al.Load forecasting of electric vehicle charging stations: Attention based spatiotemporal multigraph convolutional networks[J].IEEE Transactions on Smart Grid,2024,15(3) :3016-3027.
[8] 尤勇,孟云龍,吳景濤,等. 基于鯨魚優(yōu)化算法-支持向量回歸的汽車運動狀態(tài)估計[J] . 中國機械工程,2024,35(6) :973-981.
[9] 周澤楷,侯宏娟,孫莉,等. 基于 CNN 和 BiLSTM 神經(jīng)網(wǎng)絡模型的太陽能供暖負荷預測研究[J] . 太陽能學報,2024,45(10) :415-422.
[10] 王義國,林峰,李琦,等. 基于 TCN-LSTM 模型的電網(wǎng)電能質(zhì)量擾動分類研究[J] . 電力系統(tǒng)保護與控制,2024,52(17) :161-167.
[11] 劉寧,謝越棟,胡彬,等. CNN-LSTM 車輛運動狀態(tài)識別的 AUKF 組合導航方法[J] . 中國慣性技術(shù)學報,2024,32(8) :803-811.
[12] WANG Ning, GUO Jiahui, LIU Xiang, et al.A service demand forecasting model for oneway electric car-sharing systems combining long short-term memory networks with Granger causality test[J].Journal of Cleaner Production,2020,244 :118812.
[13] ALI A, ZHU Y, ZAKARYA M.Exploiting dynamic spatiotemporal graph convolutional neural networks for citywide traffic flows prediction[J].Neural Networks, 2022,145 :233-247.
[14] TIAN Jiarui, LIU Hui, GAN Wei, et al.Shortterm electric vehicle charging load forecasting based on TCN-LSTM network with comprehensive similar day identification[J].Applied Energy,2025,381 :125174.

 

主站蜘蛛池模板: 大英县| 巨鹿县| 北海市| 兰坪| 甘肃省| 墨竹工卡县| 奎屯市| 梅州市| 武夷山市| 合肥市| 社会| 神农架林区| 门源| 玉山县| 神木县| 石泉县| 横山县| 台北县| 晋城| 米脂县| 瑞昌市| 尚志市| 吐鲁番市| 武定县| 仙桃市| 兰溪市| 崇阳县| 金昌市| 丹寨县| 杂多县| 凤庆县| 赤峰市| 苗栗县| 长治县| 宜兰市| 定南县| 依安县| 蓝田县| 扶沟县| 文水县| 波密县|