国产熟妇勾子乱视频,免费看男阳茎进女阳道试看,夫の目の前侵犯新婚人妻在线,少女大人第五集免费观看

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

基于多智能體深度強化學習的配電網電壓分區協同控制

來源:電工電氣發布時間:2025-03-03 10:03 瀏覽次數:48

基于多智能體深度強化學習的配電網電壓分區協同控制

尹昕,曹麗鵬,王玉森
(國網山西省電力公司長治供電公司,山西 長治 046000)
 
    摘 要:為充分利用配電網中多類型調節資源的調節能力,提高新能源高比例接入下配電網的分區自治能力,提出了一種基于多智能體深度強化學習(MADRL)的配電網電壓多分區協同控制策略。采用多智能體對配電網分區協同電壓控制問題進行建模,并運用改進的反事實多智能體柔性動作-評價(COMASAC)深度強化學習模型求解配電網分區協同電壓控制問題。通過實際配電網典型日運行數據的仿真算例,驗證了所提基于多智能體深度強化學習方法在提高配電網電壓穩定性與降低網絡損耗方面的優勢。
    關鍵詞: 多智能體;深度強化學習;配電網電壓;分區協同控制;網絡損耗
    中圖分類號:TM714.2 ;TM734     文獻標識碼:A     文章編號:1007-3175(2025)02-0063-09
 
Partition Cooperative Control of Distribution Network Voltage
Based on Multi-Agent Deep Reinforcement Learning
 
YIN Xin, CAO Li-peng, WANG Yu-sen
(State Grid Shanxi Electric Power Company Changzhi Power Supply Company, Changzhi 046000, China)
 
    Abstract: In order to fully utilize the regulation capability of multiple types of regulation resources in the distribution network and improve the zonal autonomy capability of the distribution network under the high proportion of new energy access, this paper proposes a multi-zonal cooperative control strategy for distribution network voltage based on multi-agent deep reinforcement learning (MADRL). The problem of partition cooperative voltage control in distribution network is modeled using a multi-agent approach. Subsequently, an improved counterfactual multi-agent soft actor-critic (COMASAC) deep reinforcement learning model is applied to solve the zonal cooperative voltage control problem in distribution networks.Finally, simulation examples using typical day operational data from actual distribution networks demonstrate the advantages of the proposed multi-agent deep reinforcement learning method in improving voltage stability and reducing network losses in distribution networks.
    Key words: multi-agent; deep reinforcement learning; distribution network voltage; partition cooperative control; network loss
 
參考文獻
[1] 陳曉婷,何元明,王菁,等. 新型電力系統背景下配電網分布式光伏可接入容量研究[J] . 電工技術,2023(17) :44-47.
[2] 劉玉玲,張峰,張剛,等. 考慮分布式電源的配電網災中-災后兩階段協同韌性恢復決策[J]. 電力系統自動化,2024,48(2) :48-59.
[3] 閆麗梅,丁澤華. 基于譜聚類的主動配電網多時間尺度無功優化策略[J]. 浙江電力,2024,43(2) :58-68.
[4] 杜紅衛,尉同正,夏棟,等. 基于集群動態劃分的配電網無功電壓自律-協同控制[J] . 電力系統自動化,2024,48(10) :171-181.
[5] GAO Y, YU N.Deep Reinforcement Learning in Power Distribution Systems: Overview, Challenges, and Opportunities[C]//IEEE Power and Energy Society Innovative Smart Grid Technologies Conference,2021.
[6] 吳文傳,張伯明,孫宏斌,等. 主動配電網能量管理與分布式資源集群控制[J] . 電力系統自動化,2020,44(9) :111-118.
[7] 路小俊,吳在軍,李培帥,等. 面向光伏集群的配電網模型-數據聯合驅動無功/電壓控制[J]. 電力系統自動化,2024,48(9) :97-106.
[8] 朱鵬程,劉曌煜,孫可,等. 基于多分塊交替方向乘子法的蜂巢狀配電網分布式優化調度[J] . 中國電力,2023,56(6) :90-100.
[9] 趙冬梅,王浩翔,陶然. 基于改進交替方向乘子法的輸配電網分散協調魯棒優化調度模型[J] . 電網技術,2023,47(3) :1138-1150.
[10] 寇凌峰,吳鳴,李洋,等. 主動配電網分布式有功無功優化調控方法[J] . 中國電機工程學報,2020,40(6) :1856-1864.
[11] 姜濤,張東輝,李雪,等. 含分布式光伏的主動配電網電壓分布式優化控制[J] . 電力自動化設備, 2021,41(9) :102-109.
[12] LI Peishuai, ZHANG Cuo, WU Zaijun, et al.Distributed Adaptive Robust Voltage/VAR Control with Network Partition in Active Distribution Networks[J].IEEE Transactions on Smart Grid,2020,11(3) :2245-2256.
[13] 倪爽,崔承剛,楊寧,等. 基于深度強化學習的配電網多時間尺度在線無功優化[J] . 電力系統自動化,2021,45(10) :77-85.
[14] LIU Hangyue, ZHANG Cuo, CHAI Qingmian, et al.Robust Regional Coordination of Inverter-Based Volt/Var Control via Multi-Agent Deep Reinforcement Learning[J].IEEE Transactions on Smart Grid,2021,12(6) :5420-5433.
[15] 胡丹爾,彭勇剛,韋巍,等. 多時間尺度的配電網深度強化學習無功優化策略[J] . 中國電機工程學報,2022,42(14) :5034-5044.
[16] 張曉,吳志,鄭舒,等. 基于貝葉斯深度強化學習的主動配電網電壓控制[J] . 電力系統自動化,2024,48(20) :81-90.
[17] LI S , HU W , DI Cao , et al . A Multiagent Deep Reinforcement Learning Based Approach for the Optimization of Transformer Life Using Coordinated Electric Vehicles[J].IEEE Transactions on Industrial Iinformatics,2022,18(11) :7639-7652.
[18] CAO Di, HU Weihao, ZHAO Junbo, et al.A Multi-Agent Deep Reinforcement Learning Based Voltage Regulation Using Coordinated PV Inverters[J].IEEE Transactions on Power Systems,2020,35(5) :4120-4123.
[19] FOERSTER J, FARQUHAR G, AFOURAS T, et al.Counterfactual Multi-Agent Policy Gradients[C]//Proceeding of the AAAI Conference on Artificial Intelligence,2018.
[20] 王爾申,劉帆,宏晨,等. 基于 MASAC 的無人機集群對抗博弈方法[J] . 中國科學(信息科學),2022,52(12) :2254-2269.

 

主站蜘蛛池模板: 湘潭县| 磴口县| 竹溪县| 镇平县| 博白县| 迁西县| 噶尔县| 尼玛县| 顺义区| 连城县| 舟山市| 象州县| 富平县| 大城县| 宁海县| 万安县| 平远县| 清镇市| 青河县| 武平县| 苏尼特右旗| 凤翔县| 伊吾县| 高雄市| 藁城市| 宣化县| 东城区| 互助| 南开区| 黄平县| 雷波县| 石屏县| 平安县| 延川县| 枣庄市| 岱山县| 潞西市| 安远县| 乌兰浩特市| 陆良县| 太谷县|